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A weak dominant negative mutation of KCNQ1-G269S affects protein 
kinase A-mediated up-regulation of IKs channels and causes adrenergic 

triggered long QT syndrome 
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Congenital Long QT syndrome (LQTS) is 
characterized by QT interval prolongation in 
the electrocardiogram (ECG) and syncope 
due to torsade de pointes and ventricular 
fibrillation. The syndrome is caused by at 
least 13 types of gene mutations, among 
which the KCNQ1 gene mutations are 
responsible for the LQT1 (often triggered by 
adrenergic stimulations such as physical or 
emotional stress) that can cause the 
loss-of-function of IKs channel encoded by 
KCNQ1 and thereby the prolongation of the 
QT interval. We identified a KCNQ1-G269S
mutation in 11 patients from 4 families. 
Clinical data showed that most of patients 
were asymptomatic. However, when 
receiving exercise stress, QTc intervals of 
some patient’s prolonged obviously. The 
aim of present study is to explore the 
possible mechanisms underlying the 
adrenergic-triggered LQTs associated with 
G269S mutation. Thus, the G269S mutation 
was made by using PCR based mutagenesis 
and transfected into CHO or HEK293 cells 
together with KCNE1 by using 
lipofectamine method. The whole cell IKs

mutant currents were checked up using the 
patch-clamp technique. The results showed 
that the G269S mutation decreased IKs 

currents in a mutant concentration- 

dependent manner, shifted the I-V
relationship of IKs currents to more 
depolarizing direction, and accelerated the 
deactivation time of the currents. In addition, 
we found that G269S was a 
trafficking-refractory mutation and that the 
IKs reconstituted by the G269S mutant or the 
co-expression of wild type (WT) + G269S 
mutant lost their response to �-adrenergic 
stimulation. The study results suggest that 
G269S mutation: (1) exerted weak 
dominant-negative suppression effects on 
KCNQ1 channel; (2) trapped KCNQ1 WT 
subunits to form tetramers and thereby 
altered their gating kinetics; (3) might be 
associated with exercise-dependent 
unmasking of QTc prolongation.  
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